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Wild's Solution of the Nonlinear 
Boltzmann Equation 
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The relaxation to equilibrium of a spatially uniform pseudo-Maxwellian gas is 
considered. A modified Wild expansion is defined for solving the nonlinear 
Boltzmann equation. The positivity and asymptotic conditions, as well as the 
conservation rules, are maintained at each truncation order. Some particular 
examples are evaluated. The comparison with exact solutions illustrates the very 
fast convergence of this method. 
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1. INTRODUCTION 

I consider a dilute gas of structureless particles that interact through binary 
elastic collisions. The temporal  evolution of the corresponding one-particle 
distribution function f ( r ,  v, t) is characterized by the nonlinear Boltzmann 
equation. Research on this equation was induced by the lack of an explicit 
solution for the associated initial and boundary value problem. (m) A large 
number  of approximation methods for solving this problem has been 
suggested. (3) A pioneering approach in this direction is given by the 
Chapman-Enskog  method, (4) which leads to successive refinements (in 
the Knudsen number)  of the hydrodynamic equations. However, the 
convergence of this approach is a subject of discussion in the literatureJ 5) 
Other techniques of solution are based upon the so-called moment  
methods. (3) In the Grad  moment  method the distribution function is expan- 
ded in Hermite polynomials. (6) Another iterative method for solving the 
nonlinear Boltzmann equation is a perturbation scheme in terms of the 
deviation from equilibrium. (7) It is known that the linearized solution is a 
good approximation when the deviation from equilibrium is small. 
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Therefore, nonlinear effects, introduced through an iterative procedure, 
should improve the approximation. 

In order to gain insight into the Boltzmann equation, a great variety 
of interaction models have been considered in the literature. (3) For 
instance, Maxwell-type models provide a large simplification of the 
Boltzmann equation, since their collision probabilities do not depend on 
the relative velocity of the colliding particles. (2) Within these models, 
significant progress has been achieved in the study of the exact solutions of 
the nonlinear equation for spatially homogeneous distributions f(v, t). In 
this case the general solution is known within a certain Hilbert space 
5f12(R a) with norm ~ If(v, t)12/feq(l)) dv. This solution is given in the form of 
an expansion in orthogonal polynomials. The time-dependent coefficients 
in this expansion obey a solvable coupled set of nonlinear equations/2) 
This solution has been extensively studied by the sequential resolution of 
the coupled system up to some order and the numerical evaluation of the 
resulting truncated series. (8) This procedure is restricted to low values of 
the velocity, where not too many terms in the series are required. Further- 
more, it is very difficult to guarantee the positivity of the truncated series at 
all times. 

In the present paper I introduce an approximation procedure for 
solving the homogeneous Boltzmann equation for Maxwell-type 
interaction models. This method is essentially different from the above- 
mentioned ones. It is based upon a modified version of Wild's approach. ~ 
I show that the positivity and asymptotic condition as well as the 
conservation laws are verified by each iteration order. Furthermore, the 
unphysical restriction to the Hilbert space 5f2(R a) is eliminated in this 
method. These are remarkable improvements over other approximate 
approaches. 

In the following section I state the notation to be used. In Section 3 I 
introduce the method, which separates the distribution function in collision 
classes with a quite simple analytical structure. In Section 4 I show that the 
time evolution features of f(v, t) are mainly given by the first few terms in 
this expansion. Using this technique, I study the relaxation toward 
equilibrium of different initial distribution functions. I conclude with a 
discussion of the results. 

2. BASIC CONCEPTS A N D  NOTATION 

The nonlinear Boltzmann equation for the distribution function 
f(r,  v, t) of a dilute gas of structureless particles without internal degrees of 
freedom reads (3) 

N + v ' V r  "Vv f (r ,v , t )=BEf,  f ]  (2.1) 
m 
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where 

(v-vl) 'a)  
B [ f , f ] = j d v l d f l l v - v ~ l f  a IV-Vll , IT -,li 

• [ f ( r ,  v', t ) f (r ,  v' 1, t ) - f ( r ,  v, t ) f (r ,  vl, t)] (2.2) 

is the bilinear collision operator, a is the differential cross section for the 
binary collision (v, vl)~(v' ,v '~).  The incoming and postcollisional 
velocities are related by the dynamics 

v'= �89 + �89 
vl =�89189 

(2.3a) 

(2.3b) 

Here fi is a unit vector in the direction of v ' - v ' l .  In view of the possible 
application to systems of one, two, or three dimensions, we consider the 
position r and velocity v of the particle as vectors of arbitrary dimension d. 

When a spatially homogeneous gas with no external forces acting on it 
is considered, the nonlinear Boltzmann equation in d dimensions reads 

6~t f(v, t) = B[f ,  f ]  (2.4) 

Conservation of particles, momentum, and energy requires (in appropriate 
units) 

f f ( v ,  t) dv = 1 (2.5a) 

f f ( v ,  t)v dv = 0  (2.5b) 

f f(v,  t)v 2 dv = d (2.5c) 

The second conservation law indicates that the temporal evolution of the 
gas is observed from the center-of-mass reference frame. The H theorem 
guarantees that the distribution function will approach its equilibrium 
state, (10) 

f (v ,  t) ~ feq(V) = (2~)--d/2 e-V2~2 (2.6) 

Furthermore, if the distribution function is initially nonnegative, then 
Eq. (2.1) preserves this property at later times. 
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In order to simplify the complex mathematical structure of the 
collision term (2.2), one looks for mathematical models of the cross section 
with a simple dependence on the relative velocity and the scattering angle. 
Maxwell models provide this simplification. For these models the collision 
probability does not depend on the relative velocity of the colliding 
particles: 

va(v, cos 0) = ~(cos 0) (2.7) 

Such a scattering cross section may be obtained from a repulsive potential 
V(r)  = ar -21a- x). For these Maxwell molecules the probability ~(cos O) is a 
complicated function of its arguments. ~ However, one may define more 
general mathematical models by a convenient choice of the function 
a(cos 0). For instance, one may define the so-called pseudo-Maxwell 
models, for which the collision frequency is required to be finite, 

p = f  cff~.fi) dfi < oo (2.8) 

It is worth mentioning that this condition is not fulfilled by Maxwell 
molecules, since the total cross section for a repelling r 2(d 1) potential is 
infinite. 

3. D E S C R I P T I O N  OF THE M E T H O D  

The purpose of this paper is to tackle the nonisotropic Boltzmann 
equation for a pseudo-Maxwellian gas. We rewrite Eq. (2.4) in the follow- 
ing way: 

with 

~-~+ 1 f(v, t)=J[f, f ]  (3.1) 

= -  ct h(v', t) g(v'l, t) dr1 dfi (3.2) 
J [ h ,  g] # \ I v -v i i  

In this case the general solution is known within a certain Hilbert 
space s176 ) with norm t2) 

f If(v, t )12/feq(V)dv < ~ (3.3) 

This solution is given in the form of an expansion in terms of the eigen- 
functions of the corresponding linearized equation. The time-dependent 
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coefficients in this expansion can be found sequentially from a solvable 
coupled set of nonlinear equations. In actual numerical calculations this 
solution is restricted to moderate values of the velocity v < Vo, where not 
too many terms in the series are required. This v0 is an increasing function 
of the truncation order and time. ~8) Therefore, it is desirable to improve the 
numerical convergence, especially for small times and large velocities. 
Furthermore, it is very difficult to guarantee the positivity of the truncated 
expansion at all times. 

Before proceeding further, it is worth mentioning that there are no 
physical reasons for restricting considerations to functions in the Hilbert 
space LP2(Rd). ~2) So we seek solutions in the usual Banach space LI(R a) 
with norm 

f if(v, t)] d r <  (3.4) 

In this space the collision term (3.2) is a bounded and continuous 
bilinear operator J: L 1 • L1--+ L1. I propose a solution of the previous 
initial value problem with the following form: 

f(v, t )=  ~ Cn(t) Rn(v) (3.5) 
n=O 

where the factors R,(v) are defined by induction, 

Ro(v) =f(v ,  O) (3.6a) 

Rn(v) = t  ~, J[Rn_q_l ' Rq] (3.6b) 
F/q= 0 

These "collision factors" have a very clear physical meaning, as the 
distribution function of particles that result from a precise number of 
collisions. Actually, Rn(v) consists of molecules that, belonging to  Rq(V) 

with q<n, have made a collision with molecules of Rn_q ~(v). Those 
particles that have not collided since t = 0 are described by Ro(v). The first 
collision factors read explicitly 

R o = f(v, 0) (3.7a) 

RI = J[Ro, Ro] (3.7b) 

R 2 = 1J[ J[ Ro, Ro], Ro] + 1j[ Ro, J[ Ro, Ro]] (3.7c) 

R3 = 1J[J[J[Ro, Ro], Ro], Ro] + ~J[JERo, J[Ro, Roll ,  Ro] 

+ 1j[Ro, J[J[Ro, Ro], Ro] ] + 1j[Ro, J[Ro, J[Ro, Ro]] ]  

+ �89 Ro], JERo, Ro] ] (3.7d) 
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Placing expansion (3.5) into Eq. (3.1), one finds that the coefficients 
C,(t) can be exactly evaluated: 

C.(t) = e - " ' ( 1  - e - " ' ) "  (3.8) 

Then Eq. (3.5) is a representation of the distribution function in the form of 
a Wild expansion. (9'11) Its partial sums constitute a positive monotonic 
sequence which, in view of the Lebesgue monotone convergence theorem, 
converges to a Banach solution of the Boltzmann equation. 

The coefficient C,(t) weights the contribution to the distribution 
function f(v, t) of the collision factor Rn(v). We notice in Fig. la that this 
contribution is maximum at 

1 
t .  = -  ln (1  + n )  (3.9)  

# 

6 
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Fig. 1. (a) Time evolution of the coefficients C.(t) of expansion (3.5) and (b)for the 
linearized version (3.10). 
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This is not the case in the linearized version of expansion (3.5): 

f(v, t) ~ ~ C~(t) R~(v) (3.10) 
n=0 

with 

R~(v) = f (v ,  0) (3.1 la) 

L L 
=-- R n _ l ]  -- feq(V) (3.1 lb)  Rn(v ) J [ R n _ l , f e q ] _ f _ j [ f e q ,  L 

and 

1 CL(t)=~e "t(#t)n (3.12) 

where the contribution of the linearized factor L Rn(v) is dominant after n 
collision times; namely 

t~=n/# (3.13) 

It is reasonable to expect that the collision factor R,,(v) will be more 
independent of the initial distribution function as the number of collisions 
increases. ~ This idea can be stated more precisely by resumming expan- 
sion (3.5). Actually, since 

c.(t)- 1 (3.14) 
n=0 

we can write 

f (u  [ ) = L q ( ~ ) +  ~ Cn( t ) [Rn(u  
n=0 

(3.15) 

Now the contribution of the high-order terms in this series is less impor- 
tant, and an approximate solution of Boltzmann equation can be defined 
by truncating it: 

N 
fN(V, t )=f~q(V)+ ~ Cn(t)[R,(v 

n=O 
--feq(U)] (3.16) 

It is immediately seen that this solution is positive, since Rn(v)~>0 and 
N Y.n=0 Cn(t)~< 1. This is an important improvement over other 
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approximation methods. Furthermore, the conservation and asymptotic 
conditions are maintained independently of the truncation order 

f fu(V,  t) = (3.17a) dv 1 

f fN(V,  t)v dv =0  (3.17b) 

f fN(V, t)V 2 dv d (3.17c) 

fu(V, t) ~ feq(V) (3.18) 

It is worth indicating that these conditions are not verified in a direct 
truncation of Wild's sum (3.5). 

Finally, I compare the approximate solution (3.16) with the iterative 
scheme devised by Wild. (9) He defined a mild solution of Boltzmann 
equation (3.1) as the limit of the following iteration: 

wu fo  ( , t )=  e-"~f(v, 0) (3.19a) 

f u ( , t ) = e  f(v, 0 ) + #  j [ f w  w (3.19b) l, f u - 1 ] e~t' dt' 

It is easy to show that this scheme leads to expansion (3.16). (9) However, 
the N iteration of this integral equation incorporates, together with the 
leading Nth collision factor, an enormous amount of superfluous infor- 
mation. Furthermore, it does not satisfy the conservation and asymptotic 
condition, except in the limit N ~  oe. In short, the expansion (3.16) 
represents a modification to Wild's method that overcomes the former 
hindrances. 

In the following section I show that this representation of the 
distribution function can be very convenient for the numerical analysis of 
the relaxation process. 

4. N U M E R I C A L  C A L C U L A T I O N S  

Up to now I have been concerned with the properties of the expansion 
in collision factors (3.15). Now I check the method by comparing the 
approximate solution (3.16) with the exactone for a particular example. 
I test the precision of the method through the BKW mode, (12) 

e-"~/~-"~ I- . (d ~ )] 
f ( v ' t ) =  f eq (V) - ( - f - - - -~a~[1 -~ -a  1 - a  (4.1a) 
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2 
a(t) = ~(0)e ~", 0 ~ cr(0) < ~ - -  (4.1b) 

2 + d  

2 - F F ( d -  1)/2] f e(cos O) 1 - c o s  4 0 -- sin 4 dO (4.1c) 

with e = v2/2 the energy per thermal unit. This is the only known exact 
nontrivial solution of Eq. (2.4). Figure 2 displays the first few collision fac- 
tors Rn for a two-dimensional BKW mode with ~r(0)= 1/4 as a function of 
the energy. One observes a fast convergence to the equilibrium distribution 
function when the number of collisions increases. I have also evaluated the 
reiative error for various values of energy and time. Figures 3 and 4 show 
the relative error of the approximate solution for the same BKW mode in 
the Tjon-Wu interaction model 

~(cos 0) = 1/~ Isin 0[ (4.2) 

In Fig. 4 the truncation order was arbitrarily fixed at N - 4 .  The con- 
vergence is very good at small and large times. Actually, the truncated 
expansion (3.16) provides a satisfactory description of the relaxation 
process over a wide energy range, which rapidly increases with time. 

Henceforth, I consider the temporal evolution of an initially non- 
isotropic distribution, namely 

f(v, t) = f~q(v) 2v2e-V2/2[1 - cos(20)] (4.3) 

with 0 the polar angle of the velocity v. Figure 5 shows the collision factors 
Rn up to the second order. One can see that the two overpopulated peaks 
spread in the angular direction for increasing number of collisions, giving 
rise to a population ring at an energy ~ = 1. Once these collision factors are 
known, the time evolution of the system can be easily evaluated. Actually, 
such a simple calculation leads to a behavior similar to that of Fig. 7 of 
ref. 8, which was evaluated with a truncated Laguerre expansion. 

5. C O N C L U S I O N S  

I have introduced an expansion of the distribution function in collision 
factors for a spatially homogeneous pseudo-Maxwellian gas. This modified 
version of Wild's sum gives a simple physical picture of the evolution of the 
system. By applying the method to some particular initial condition, I have 
shown that it is a very suitable approach for the numerical analysis of the 
relaxation process. Furthermore, it satisfies the conservation laws and the 
positivity and asymptotic conditions, and eliminates the unphysical restric- 



366 Barrachina 

Fig. 2. 
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Collision factors R~ for a two-dimensional B KW  mode with a ( 0 ) =  1/4 as a function 
of the energy e = v2/2. 
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Relative error of expansion (3.16) truncated at N =  4 for the case shown in Fig. 3. 
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t ion to the Hilbert  space ~ ( R d ) .  These are remarkable  improvements  over 
other approx imat ion  methods.  Most  of the discussion was restricted to 

analytical  initial  d is t r ibut ion  functions,  even though more complex velocity 

dependences can be analyzed. 
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